Abstract

The environmentally active molecule nitrogen dioxide (NO2) has been systematically studied using high level theoretical methods. The electronic ground state and the low-lying quartet states of NO2 have been investigated. Single reference restricted open-shell self-consistent field (SCF), complete active space SCF (CASSCF), spin-restricted (R) and spin-unrestricted (U) configuration interaction with single and double excitations (CISD), coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], and internally contracted multireference configuration interaction (ICMRCI) methods along with Dunning's correlation consistent polarized valence cc-pVXZ and augmented cc-pVXZ (where X=T,Q,5) basis sets were used in this research. At the aug-cc-pV5Z/UCCSD(T) level the classical adiabatic excitation energies (Te values) of the three lowest-lying quartet excited states were predicted to be 83.3 kcalmol (3.61 eV, 29 200 cm(-1)) for the ã 4A2 state, 93.3 kcalmol (4.05 eV, 32 600 cm(-1)) for the b 4B2 state, and 100.8 kcalmol (4.37 eV, 35 300 cm(-1)) for the c 4A1 state. The quantum mechanical excitation energies (T 0 values) were determined to be 81.6 kcalmol (3.54 eV, 28 500 cm(-1)) for the a 4A2 state and 90.7 kcalmol (3.93 eV, 31 700 cm(-1)) for the b 4B2 state. The lowest quartet linear Renner-Teller 4Pi state gives rise to the a 4A2 state with 112.8 degrees and the b 4B2 state with 124.4 degrees <(ONO) bond angles upon bending. The b state shows some peculiar behavior. Although CASSCF, RCISD, UCISD, RCCSD, UCCSD, and RCCSD(T) methods predicted the presence of a Cs equilibrium geometry (a double minimum 4A' state), SCF, UCCSD(T), and ICMRCI wave functions predicted the C2v structure for the b 4B2 state. The importance of both dynamical and nondynamical correlation treatments for the energy difference between C2v and Cs structures of b state is highlighted in this context. The c 4A1 state is predicted to have a very small bond angle of 85.8 degrees . Potential energy diagrams with respect to the bond angles of the ground state and four quartet states are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.