Abstract
High-level ab initio calculations of aluminum monoiodide (AlI) molecule are performed by utilizing the multi-reference configuration interaction plus Davidson correction (MRCI+Q) method. The core-valence correlation (CV) and spin–orbit coupling (SOC) effect are considered. The adiabatic potential energy curves (PECs) of a total of 13 Λ–S states and 24 Ω states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ–S states are analyzed with the aid of the spin–orbit matrix elements. Finally, the transition properties including transition dipole moment (TDM), Frank–Condon factors (FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.