Abstract
A low-lying resonance in FeCN− anion was identified through abrupt changes in the spectral dependence of the photoelectron angular distribution. Non-Franck–Condon transitions from the resonance to the neutral FeCN (4Δ), and the corresponding photoelectron angular distributions revealed that the resonance is a dipole scattering state. Significant thermionic electron emission was observed in the resonant photoelectron spectra, indicating a strong coupling of the resonance with the ground state of this triatomic anion and its competition over autodetachment. This low-lying resonance is identified to be an efficient pathway for the formation of FeCN− anion in the outer envelope of IRC+10216. The results in general reveal formation pathways in space for anions with low-lying resonances and large permanent dipole moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.