Abstract

In this paper we introduce the design of a switchable metasurface waveplate using low-loss phase-change material. The structure includes Antimony Triselenide grating deposited over a glass substrate, which can be easily fabricated using standard silicon fabrication technology. By employing the different birefringent effect induced, the grating operates as a quarter-wave plate when Antimony Triselenide is in the amorphous state, and operates as a half-wave plate when it is in the crystalline state. The grating parameters (thickness, height, and period) are optimized using global genetic algorithm. The design provides above 80% transmission for amorphous and crystalline states over the telecom band between 1.3 and 1.65 µm. The proposed design constitutes an important device for integrated silicon nanophotonics and flat optics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call