Abstract

An overview of the most recent developments and improvements to the low-loss TriPleX Si3N4 waveguide technology is presented in this paper. The TriPleX platform provides a suite of waveguide geometries (box, double stripe, symmetric single stripe, and asymmetric double stripe) that can be combined to design complex functional circuits, but more important are manufactured in a single monolithic process flow to create a compact photonic integrated circuit. All functionalities of the integrated circuit are constructed using standard basic building blocks, namely straight and bent waveguides, splitters/combiners and couplers, spot size converters, and phase tuning elements. The basic functionalities that have been realized are: ring resonators and Mach–Zehnder interferometer filters, tunable delay elements, and waveguide switches. Combination of these basic functionalities evolves into more complex functions such as higher order filters, beamforming networks, and fully programmable architectures. Introduction of the active InP chip platform in a combination with the TriPleX will introduce light generation, modulation, and detection to the low-loss platform. This hybrid integration strategy enables fabrication of tunable lasers, fully integrated filters, and optical beamforming networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.