Abstract
For traditional switching architecture, packet switching performs fine granularity data packet forwarding, but its digital signal processing (DSP) has high power consumption (PC). All-optical switching provides rapid exchange of wavelength resources, which has coarse granularity. In scenarios where the PC is limited, such as broadband satcom, a switching architecture with lower PC and finer granularity than optical switching would be useful. In this paper, we propose a novel, to the best of our knowledge, low-loss microwave photonic switching architecture that can exchange subband signals across beams and frequency bands. The switching process is realized by exchanging optical carriers instead of payload signals, which does not degrade the signal power, guaranteeing the signal-to-noise ratio (SNR). We conducted a proof-of-concept experiment of 2 × 2 switching with two 1.2-GBaud quadrature phase-shift keying (QPSK) signals; an error vector magnitude (EVM) of or less than 13.87% is realized after forwarding. The proposed system has the advantages of low PC, high SNR, and fine granularity, and is very promising for flexible forwarding in future satcom systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.