Abstract
Metasurfaces are established tools for manipulating light and enhancing light-matter interactions. However, the loss of conventional meta-atoms usually limits the performance potential of metasurfaces. In this study, we propose a class of metasurfaces based on discretized meta-atoms able to mitigate the radiative and intrinsic losses. By discretizing meta-atoms, we reduce the loss of metal metasurfaces to levels comparable to dielectric metasurfaces in the short-wavelength infrared region at the surface lattice resonance mode. Furthermore, we propose a coupling model to explain the observed reduction in loss in full agreement with the results obtained from finite-element method. We also reproduce this phenomenon using dielectric metasurface at electric and magnetic resonances in the visible region. Our finding offers valuable insights for the design and application of metasurfaces, while also providing theoretical implications for other resonance fields beyond metasurfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.