Abstract

A hybrid plasmonic structure comprising a silicon slot waveguide separated from an inverse metal ridge by a thin low-index insulator gap is proposed and investigated. Owing to its symmetric hybrid configuration containing closely spaced silicon rails near the metal ridge, the fundamental symmetric hybrid slot mode supported by the structure is demonstrated to be capable of simultaneously achieving low propagation loss and subwavelength field confinement within a wide range of physical dimensions at the telecom wavelength. Comprehensive numerical investigations regarding the effects of key geometric parameters on the guided modes' properties, including the slot sizes, the shape and dimension of the silicon rails, the width of the gap region as well as the height of metallic nanoridge, have been conducted. It is revealed that the propagation distance of the symmetric mode can be more than several millimeters (even up to the centimeter range), while simultaneously achieving a subwavelength mode size and tight field confinement inside the gap region. In addition to the studies on the modal characteristics, excitation strategies of the guided hybrid modes and the conversion between dielectric slot and hybrid slot modes are also numerically demonstrated. The studied platform potentially combines the advantages of silicon slot and plasmonic structures, which might lay important groundwork for future hybrid integrated photonic components and circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.