Abstract

Luminescent solar concentrators (LSCs) have emerged as a disruptive technology that can potentially enable carbon-neutral buildings. The issues with current LSCs, however, are low optical efficiencies and limited long-term outdoor stability. Here we simultaneously address them by developing an LSC with aggregation-induced-emission (AIE) molecules embedded in a polydimethylsiloxane (PDMS) matrix. The AIE-emitter displayed a near unity emission quantum yield when embedded in the PDMS and the apparent absorption-emission Stokes shift reached 0.59 eV, effectively suppressing the reabsorption loss of waveguided photons inside an LSC. Moreover, the surface texture of the PDMS matrix was engineered using a bioinspired nanolithography method with a natural lotus leaf as the template. This allowed the fabricated AIE-PDMS LSC to inherit the superhydrophobic, self-cleaning properties of the leaf and meanwhile to possess a light-trapping capability. Our 100 cm2 LSC, when coupled with commercial Si PVs, delivered efficient solar power conversion, high visible transmittance, and high working stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.