Abstract
We numerically analyzed a graphene optical phase modulator with a Si or Ge waveguide operating at a mid-infrared wavelength. We found that the change in operating wavelength from a near-infrared wavelength to a mid-infrared wavelength enables phase modulation with a significantly small optical loss at a realistic bias voltage. We analyzed the wavelength dependence of the modulation characteristics in the wavelength range from 1.55 to 10 µm, which revealed that the minimum insertion of 4 dB with 1 dB optical loss change during phase modulation can be achieved at a wavelength of 4 µm. The phase modulation efficiency was expected to be 0.045 V·cm. Thus, we can obtain a practical graphene optical phase modulator at a wavelength of 4 µm, which will be useful for optical communication and sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.