Abstract

Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, whereas the development of catalysts with high activity and stability with low‐load Pt is still a great challenge. Through the spatial confinement effect and template method, herein, hollow graphene spheres with functionalized Pt nanoclusters (Pt/GHSs) are constructed and developed as effective electrocatalysts for the hydrogen evolution reaction (HER). Electrochemical tests show that Pt/GHSs exhibit a high electrocatalytic activity and stability compared with commercial Pt/C catalysts toward HER in alkaline media. The electric double‐layer capacitance value reaches 26.0 mF cm−2, indicating that Pt/GHSs have a large electrochemically active area. Meanwhile, the load of metal Pt in the Pt/GHSs is only one‐fifth of commercial Pt/C catalysts, which significantly reduces the production cost of the catalyst. Herein a new opportunity for the low‐cost mass production of efficient and stable catalysts for practical applications is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.