Abstract

The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and UHC emissions limit their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas and syngas mixtures are presented in this study. A mixture of natural gas, water vapor and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of ∼30 vol% and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of natural gas and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed natural gas operation. For the second concept an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.