Abstract

Low-light image enhancement (LIE) has attracted tremendous research interests in recent years. Retinex theory-based deep learning methods, following a decomposition-adjustment pipeline, have achieved promising performance due to their physical interpretability. However, existing Retinex-based deep learning methods are still suboptimal, failing to leverage useful insights from traditional approaches. Meanwhile, the adjustment step is either oversimplified or overcomplicated, resulting in unsatisfactory performance in practice. To address these issues, we propose a novel deep-learning framework for LIE. The framework consists of a decomposition network (DecNet) inspired by algorithm unrolling and adjustment networks considering both global and local brightness. The algorithm unrolling allows the integration of both implicit priors learned from data and explicit priors inherited from traditional methods, facilitating better decomposition. Meanwhile, considering global and local brightness guides the design of effective yet lightweight adjustment networks. Moreover, we introduce a self-supervised fine-tuning strategy that achieves promising performance without manual hyperparameter tuning. Extensive experiments on benchmark LIE datasets demonstrate the superiority of our approach over existing state-of-the-art methods both quantitatively and qualitatively. Code is available at https://github.com/Xinyil256/RAUNA2023.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.