Abstract

Low-light imaging is a challenging task because of the excessive photon shot noise. Color imaging in low-light is even more difficult because one needs to demosaick and denoise simultaneously. Existing demosaicking algorithms are mostly designed for well-illuminated scenarios, which fail to work with low-light. Recognizing the recent development of small pixels and low read noise image sensors, we propose a learning-based joint demosaicking and denoising algorithm for low-light color imaging. Our method combines the classical theory of color filter arrays and modern deep learning. We use an explicit carrier to demodulate the color from the input Bayer pattern image. We integrate trainable filters into the demodulation scheme to improve flexibility. We introduce a guided filtering module to transfer knowledge from the luma channel to the chroma channels, thus offering substantially more reliable denoising. Extensive experiments are performed to evaluate the performance of the proposed method, using both synthetic datasets and real data. Results indicate that the proposed method offers consistently better performance over the current state-of-the-art, across several standard evaluation metrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call