Abstract

Aiming at the lack of reference images for low-light enhancement tasks and the problems of color distortion, texture loss, blurred details, and difficulty in obtaining ground-truth images in existing algorithms, this paper proposes a multi-scale weighted feature low-light based on Retinex theory and attention mechanism. An image enhancement algorithm is proposed. The algorithm performs multi-scale feature extraction on low-light images through the feature extraction module based on the Unet architecture, generates a high-dimensional multi-scale feature map, and establishes an attention mechanism module to highlight the feature information of different scales that are beneficial to the enhanced image, and obtain a weighted image. High-dimensional feature map, the final reflection estimation module uses Retinex theory to build a network model, and generates the final enhanced image through the high-dimensional feature map. An end-to-end network architecture is designed and a set of self-regular loss functions are used to constrain the network model, which gets rid of the constraints of reference images and realizes unsupervised learning. The final experimental results show that the algorithm in this paper maintains high image details and textures while enhancing the contrast and clarity of the image, has good visual effects, can effectively enhance low-light images, and greatly improves the visual quality. Compared with other enhanced algorithms, the objective indicators PSNR and SSIM have been improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call