Abstract

External quantum efficiency (EQE) roll-off under high current injection has been one of the major limiting factors toward the development of organic semiconductor laser diodes (OSLDs). While significant progress in this regard has been made on organic semiconductors (OSCs) emitting in the blue-green region of the visible spectrum, OSCs with longer wavelength emission (>600nm) have fallen behind in both material development and the advancement in device architectures suitable for the realization of OSLDs. Therefore, to make simultaneous incremental advancements, a host-guest system comprising of a high performing poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) polymer and an efficient small molecule laser dye, dithiophenyl diketopyrrolopyrrole (DT-DPP), is used. This combination provides an extremely low amplified spontaneous emission threshold of 4.2µJcm-2 at an emission wavelength of 620nm. The solution-processed organic light-emitting diodes (OLEDs) fabricated using this system exhibit a high external quantum efficiency (EQE) of 2.6% with low efficiency roll-off and high current injection up to 90Acm-2 to yield ultrahigh luminance of over 1.5millioncdm-2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.