Abstract

The aims of this study were to test the theory that transduction of low-level electromagnetic fields (EMFs) is mediated like other stimuli, and to determine the false-negative rate of the method used to assess the occurrence of transduction (intra-subject comparison of stimulus and non-stimulus states (ICOS)). A light stimulus was chosen as a basis of comparison because light could be applied and removed at precise time points, similar to the manner in which EMFs were controlled. Subjects exposed to a weak light stimulus during 2-second epochs exhibited alterations in brain electrical activity that were similar to those previously observed in subjects exposed to EMFs. The false-negative rate of the ICOS method was 61%, since it registered an effect in only 39% of the subjects (1128) whereas all subjects were actually aware of the light. In a second group of subjects that were exposed to 0.8 G (1.5 or 10 Hz), 58% (1119) exhibited similar alterations in brain activity, as determined using ICOS. Previous measurements in the same subjects using a different method showed that the EMFs actually affected brain electrical activity in all subjects; consequently, the false-negative rate was 42% when an EMF was used as the stimulus. The results suggested that the post-transduction brain electrical processes in human subjects were similar in the cases of EMF and light stimuli, as hypothesized, and that the high negative rate of the ICOS method (here and in previous studies) was composed partly or entirely of false-negative results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call