Abstract

A carbon nanotube field effect transistor (CNTFET) emerged as an alternative to the complementary metal oxide semiconductor (CMOS) for implementing low-power high-speed very-large-scale integration circuits. In this study, the CNTFET technology is discussed that has faster switching speed and high-carrier mobility as compared with the CMOS technology. A new technique ultra-low power dynamic node driven transistor domino logic is proposed for designing low-power domino logic circuits. 2, 4, 8 and 16 input logic gates are simulated using the proposed and existing techniques. Simulation is done on an H-Spice Stanford CNFET 32 nm model at a clock frequency of 200 MHz using the CNTFET technology. The proposed technique shows a maximum power reduction of 57.14% and a maximum delay reduction of 50.24% as compared with the current mirror footed domino logic technique in CNTFET technology. The proposed technique has a maximum power reduction of 96.61% in the CNTFET technology as compared with its counterpart in the CMOS technology for the two-input OR gate. The proposed technique shows a maximum improvement of 1.39× in unity noise gain as compared with the conditional stacked keeper domino logic technique for 16 input OR gates in the CNTFET technology at 200 MHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call