Abstract
Studies from this laboratory demonstrate that LLC-PK1/Cl4 cells, a cultured renal cell line, respond to incubation in low-K+ medium by coordinately increasing abundance of both alpha- and beta-subunits of Na(+)-K(+)-ATPase but increase only beta- and not alpha-mRNA levels (Lescale-Matys et al. J. Biol. Chem. 265: 17935-17940, 1990) and that alpha-abundance is likely increased as a result of increased efficiency of alpha-mRNA translation (L. Lescale-Matys and A. A. McDonough. J. Cell Biol. 111: 311A, 1990). The aim of this report was to determine if nontransformed kidney cells would respond to low K+ in a similar manner. We incubated primary cultures of rat proximal tubule cells in low K+ (0.25 mM) for up to 24 h to address this aim. Na(+)-K(+)-ATPase activity, measured enzymatically, and abundance of alpha- and beta-subunits, measured by immunoblot, were increased significantly and coordinately by 8 h of low K+, and, by 24 h of low K+, these parameters were increased to 2.17 +/- 0.34 (activity), 2.03 +/- 0.21 (alpha), and 2.39 +/- 0.48 (beta)-fold over control. Pretranslationally, beta-mRNA, measured by Northern blot analysis, increased to 1.76 +/- 0.35 after 3 h of low K+ and to 3.4 +/- 0.75-fold over control after 24 h of low K+. The increase in alpha-mRNA was smaller and delayed compared with the beta-mRNA response, but it was sufficient to account for the observed increase in alpha-protein and Na(+)-K(+)-ATPase activity at steady state: alpha-mRNA increased to 1.27 +/- 0.09 after 6 h and to 1.91 +/- 0.41-fold over control after 24 h in low K+. We conclude that the accumulation of sodium pumps in cultured renal proximal tubule cells, unlike LLC-PK1 cells, can be accounted for by increases in both alpha- and beta-subunit mRNA levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.