Abstract

Recent attention to impulse antenna phased array has necessitated the need to develop a reliable high-voltage high-repetition-rate switch that will operate with ultralow jitter. An ideal jitter of a small fraction of the rise time is required to accurately synchronize the array to steer and preserve the rise time of the radiated pulse. This paper presents the impact that gases and gas mixtures have on switch performance which includes recovery rate and, in particular, jitter. A 50-Omega 1-nF pulse-forming line is charged to 30 kV and provides the low inductance voltage source to test the different gases. Triggering is provided by a solid-state opening switch voltage source that supplies >100-kV 10-ns rise-time pulses at a rep rate of up to 1 kHz in burst mode. A hermetically sealed spark gap with a Kel-F lining is used to house the switch and high-pressure gas. The system includes a gas-mixing chamber that can mix various gases up to 2000 psi. Gases tested include dry air, H2, N2, and SF6. Switch operations in 30 kV and 10 Hz have shown reliable subnanosecond jitter times with pure gases, including dry air, H2, N2, and with H2 - N2 and N2 - SF6 gas mixtures. The system was then modified for 50-kV 100-Hz operations with data collected for each of the pure gases. Recovery was monitored with no major problems at the 100-Hz operation, and subnanosecond jitter results for H2 , N2, and SF6 are also recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.