Abstract

Jitter of a 25-Gb/s optical link is numerically and experimentally analyzed. The numerical analysis shows that a 25-Gb/s optical transceiver needs retiming circuits in its transmitter and receiver in order to satisfy the targeted jitter budget of the optical link. Because the random jitter (RJ) largely contributes the total jitter of the 25-Gb/s optical link, an equation for calculating the RJ caused by relative intensity noise (RIN) was experimentally derived. According to the calculated RJ, the rise and fall times of an optical transmitter must be shortened to less than 19 ps to satisfy the targeted total jitter (less than 0.6 UI) at vertical-cavity surface-emitting laser (VCSEL) temperature of 80 °C. Moreover, a CMOS-based optical link, which consists of a VCSEL and a photodiode operating at 850-nm wavelength, a CMOS laser diode (LD) driver, and a CMOS transimpedance amplifier, was developed. The LD driver applies an asymmetric equalizer to shorten the fall time because nonlinear effects of a VCSEL generally make the fall time longer than the rise time. The experimental analysis of the developed optical link demonstrated total jitter of 0.58 UI (excluding deterministic jitter of an electrical interface) at data rate of 25 Gb/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.