Abstract

In this paper, we propose a surface acoustic wave (SAW) sensor with a Ag-doped ZnO nanoparticle film for low-intensity ultraviolet (UV) light detection. With this sensor, Ag doping is shown to effectively enhance ZnO thin film conductivity, thereby improving the SAW sensor sensitivity. Furthermore, it also enlarges the sensor’s linear response range. Prior to fabrication, the response mechanism was analyzed and the SAW device was designed. The ZnO film was characterized using scanning electron microscopy, x-ray diffraction, and atomic force microscopy. The sensor response under UV light (365 nm) irradiation was measured using a network analyzer. The characteristic improvement of the SAW UV sensor due to Ag-doping was verified by the amplitude shift of S21 from 0.31 dB to 0.97 dB under UV irradiation of 4 μW cm−2. Also, the enhanced sensitivity and lowest detection limit were evaluated as 0.2 dB/(μW cm−2) and 0.05 μW cm−2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call