Abstract

Low-intensity pulsed ultrasound is found to be effective in axonal regeneration, while the role of ultrasound in axonal growth guidance is still unclear. This study was performed to explore the neuroprotective role of low-intensity pulsed ultrasound (US) both in vitro and in vivo. Primary cultured rat cortical neurons were subjected to 1.0 MHz ultrasound for 5 min every day at intensity of 0, 0.008, 0.12, and 0.21 W/cm2. Our results demonstrated that low-intensity pulsed ultrasound significantly increased neuronal cell viability and inhibited neuronal apoptosis in vitro as determined by fluorescein diacetate assay (FDA) and a TdT-mediated biotin-dUTP nicked-end labeling (TUNEL) assay. Moreover, low-intensity pulsed ultrasound at 0.12 W/cm2 significantly enhanced the axonal growth guidance by activation of netrin-1 and DCC (deleted in colorectal carcinoma) expression as determined by Western blots assay. More interestingly, we further found that low-intensity pulsed ultrasound treatment at 0.21 W/cm2 promoted the functional restoration of rat injured nerves in vivo, decreased hemorrhage, and reversed the injury process by activating positive netrin-1 expression as seen in the immunohistochemistry (IHC) assay. Thus, our study strongly demonstrated that low-intensity pulsed ultrasound activated netrin-1/DCC signaling and further mediated neurite outgrowth. It would be a new approach to nerve regeneration in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call