Abstract

Autologous human fibroblasts have the potential to differentiate into the osteogenic lineage under specific conditions and can be utilized for bone regeneration. However, their efficiency is currently unsatisfactory. Recently, low-intensity nanosecond pulsed electric field (nsPEF) stimulation has been demonstrated to enhance cell pluripotency by activating epigenetic regulatory pathways. In this study, human dermal fibroblasts were exposed to different intensities of nsPEF to assess whether these exposures resulted in changes in proliferation rate, calcium salt deposition, and expression of differentiation-related markers in different experimental groups. The results showed a significant increase in cell proliferation, pluripotency, bone marker expression, and osteogenic differentiation efficiency when stimulating cells with 5 kV/cm of nsPEF. However, cell proliferation and differentiation significantly decreased at 25 kV/cm. Additionally, the proliferation and efficiency of osteogenic differentiation were reduced when the nsPEF intensity was increased to 50 kV/cm. Treatment with a 5 kV/cm of nsPEF led to increased and concentrated expression of Yes-Associated Protein (YAP) in the nucleus. These observations suggest that human dermal fibroblasts possess a heightened potential to differentiate into osteogenic cells when activated with nsPEF at 5 kV/cm. Consequently, the nsPEF strengthening strategy shows promise for fibroblast-based tissue-engineered bone repair research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call