Abstract

BackgroundOur previous study showed that light-emitting diode modulation of the hypothalamic paraventricular nucleus (PVN), which is the control center of the sympathetic nervous system, might attenuate neuroinflammation in the PVN and prevent ventricular arrhythmias (VAs) after myocardial infarction (MI). Low-intensity focused ultrasound (LIFU) has deeper penetration than does light-emitting diode, while its effect on the PVN has not been reported. ObjectiveThis study aimed to explore the effect of LIFU modulation of the PVN on the inducibility of post-MI VAs. MethodsFifty-four Sprague-Dawley rats were randomly divided into acute control (n = 12, 22.22%), acute MI (AMI, n = 12, 22.22%), AMI + LIFU (n = 12, 22.22%), chronic control (n = 6, 11.11%), chronic MI (CMI, n = 6, 11.11%), and CMI + LIFU (n = 6, 11.11%) groups. MI was induced by left anterior artery ligation, and electrocardiographic recording for 0.5 hours after MI and programmed electrophysiological stimulation were used to test the vulnerability of VAs. Peripheral sympathetic neural activity was assessed by measuring left stellate ganglion neural activity. Finally, hearts and brains were extracted for Western blotting and histopathological analysis, respectively. ResultsCompared with the AMI group, AMI-induced VAs (P < .05) and left stellate ganglion neural activity (P < .05) were significantly attenuated in the AMI + LIFU group. In addition, LIFU resulted in a significant reduction of microglial activation in the PVN and expression of inflammatory cytokines in the peri-ischemic myocardium. In the CMI + LIFU group, there was no obvious tissue damage in the brain. ConclusionLIFU modulation of the PVN may prevent the incidence of post-MI VAs by attenuating MI-induced sympathetic neural activation and inflammatory response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.