Abstract
Hypothermia can occur during aquatic exercise despite production of significant amounts of heat by the active muscles. Because the characteristics of human thermoregulatory responses to cold during exercise have not been fully elucidated, we investigated the effect of low-intensity exercise on the shivering response to core cooling in cool water. Eight healthy young men (24 ± 3 yr) were cooled through cool water immersion while resting (rest trial) and during loadless pedaling on a water cycle ergometer (exercise trial). Before the cooling, body temperature was elevated by hot water immersion to clearly detect a core temperature at which shivering initiates. Throughout the cooling period, mean skin temperature remained around the water temperature (25°C) in both trials, whereas esophageal temperature (Tes) did not differ between the trials (P > 0.05). The Tes at which oxygen uptake (V̇o2) rapidly increased, an index of the core temperature threshold for shivering, was lower during exercise than rest (36.2 ± 0.4°C vs. 36.5 ± 0.4°C, P < 0.05). The sensitivity of the shivering response, as indicated by the slope of the Tes-V̇o2 relation, did not differ between the trials (-441.3 ±177.4 ml·min-1·°C-1 vs. -411.8 ± 268.1 ml·min-1·°C-1, P > 0.05). The thermal sensation response to core cooling, assessed from the slope and intercept of the regression line relating Tes and thermal sensation, did not differ between the trials (P > 0.05). These results suggest that the core temperature threshold for shivering is delayed during low-intensity exercise in cool water compared with rest although shivering sensitivity is unaffected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.