Abstract

Bio-nanocapsules (BNCs) consisting of hepatitis B virus surface antigen (HBsAg) L proteins and phospholipids are used as efficient non-viral carriers for liver-specific delivery of genes and drugs. Considering the administration to HB vaccinees and HB patients, endogenous anti-HBsAg immunoglobulins (HBIGs) may reduce the delivery efficacy and prevent repetitive administration. Therefore, low immunogenic BNCs were generated by inserting two point mutations in the HBsAg L protein, which were found in HBV escape mutants. Escape mutant-type BNC (emBNC) showed 50% lower HBIG binding capacity than that of parental BNC (wtBNC). It induced HBIG production to a lesser extent than that associated with wtBNC in BALB/c mice. The emBNC could accumulate into human hepatocyte-derived tumor in mice pre-treated with HBIGs. The complex of emBNC and cationic liposomes could deliver plasmid DNA to HepG2 cells efficiently in the presence of HBIGs. Thus, emBNC could evade HBIG-neutralizing antibodies, expanding the clinical utility of BNC-based nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call