Abstract
Large strain hysteresis and remnant strain are one of the vital reasons for the absence of BiFeO3-BaTiO3-based ceramics in commercial actuator fields. Here, we elaborately propose a strategy, preparing 0–3 type composite ceramics, to reduce the hysteresis and remnant strain, and the target is successfully achieved by building restoring force and polarization field. Normal strain constant and electric field-induced strain in 0–3 composites have enhanced by 260% and 196% compared to those of non-composite ceramics, respectively. Also, hysteresis and remnant strain in 0–3 composites have decreased by 35.9% and 50.6% in contrast to those of non-composites. Superior electrostrain properties under the low electric field are attributed to the construction of polarization field, restoring force, and micro-capacitance, coinciding with phase field simulation, and the strategy will pave a useful way to optimize the hysteresis and remnant strain in BiFeO3-BaTiO3-based high-temperature ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.