Abstract
Hydrogen sulphide, H(2)S, is a gaseous compound involved in a number of biological responses, e.g. blood pressure, vascular function and energy metabolism. In particular, H(2)S is able to lower blood pressure, protect from injury in models of ischaemia-reperfusion and induce a hypometabolic state. In chronic kidney disease (CKD), low plasma hydrogen sulphide levels have been established in humans and in animal models. The enzymes involved in its production are cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulphurtransferase. The mechanisms for H(2)S decrease in CKD are related to the reduced gene expression (demonstrated in uraemic patient blood cells) and decreased protein levels (in tissues such as liver, kidney, brain in a CKD rat model). In the present Nephrol Dial Transplant issue, in fact, Aminzadeh and Vaziri document that the alterations in this pathway complicate the uraemic state and are linked to CKD progression. They furnish a time frame in CKD and record enzyme tissue distribution. It remains to be established if low H(2)S is causally linked to CKD progression and if interventions aimed to restore the status quo ante are able to modify this picture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.