Abstract

BackgroundType 1 diabetes (T1D) is thought to be an autoimmune disease driven by anti-islet antigen responses and mediated by T-cells. Recent published data suggests that T-cell reactivity to modified peptides, effectively neoantigens, may promote T1D. These findings have given more credence to the concept that T1D may not be solely an error of immune recognition but may be propagated by errors in protein processing or in modifications to endogenous peptides occurring as result of hyperglycemia, endoplasmic reticulum (ER) stress, or general beta cell dysfunction. In the current study, we hypothesized that diabetes-associated epitopes bound human leukocyte antigen (HLA) class I poorly and that post-translational modifications (PTM) to key sequences within the insulin-B chain enhanced peptide binding to HLA class I, conferring the CD8+ T-cell reactivity associated with T1D.ResultsWe first identified, through the Immune Epitope Database (IEDB; www.iedb.org), 138 published HLA class I-restricted diabetes-associated epitopes reported to elicit positive T-cell responses in humans. The peptide binding affinity for their respective restricting allele(s) was evaluated in vitro. Overall, 75% of the epitopes bound with a half maximal inhibitory concentration (IC50) of 8250 nM or better, establishing a reference affinity threshold for HLA class I-restricted diabetes epitopes. These studies demonstrated that epitopes from diabetes-associated antigens bound HLA with a lower affinity than those of microbial origin (binding threshold of 500 nM for 85% of the epitopes). Further predictions suggested that diabetes epitopes also bind HLA class I with lower affinity than epitopes associated with other autoimmune diseases. Therefore, we measured the effect of common PTM (citrullination, chlorination, deamidation, and oxidation) on HLA-A*02:01 binding of insulin-B-derived peptides, compared to native peptides. We found that these modifications increased binding for 44% of the insulin-B epitopes, but only 15% of the control peptides.ConclusionsThese results demonstrate that insulin-derived epitopes, commonly associated with T1D, generally bind HLA class I poorly, but can be subject to PTM that improve their binding capacity and may, in part, be responsible for T-cell activation in T1D and subsequent beta cell death.

Highlights

  • Type 1 diabetes (T1D) is thought to be an autoimmune disease driven by anti-islet antigen responses and mediated by T-cells

  • The tool was applied to epitopes in the Immune Epitope Database (IEDB) that are derived from a set of human proteins associated with diabetes [8], further modified to take advantage of the IEDB’s search interface that allows for identification of epitope records directly associated with studies related to a specific disease and/or autoimmune context

  • The query was structured for epitopes reported to elicit positive T-cell responses in human hosts as determined using multimer/ tetramer staining assays or readouts based on intracellular cytokine staining (ICS), enzyme-linked immunospot (ELISPOT), or 51Cr-release assays

Read more

Summary

Introduction

Type 1 diabetes (T1D) is thought to be an autoimmune disease driven by anti-islet antigen responses and mediated by T-cells. The distinctive inflammation in the pancreas may trigger increased expression of enzymes, such as tissue transglutimase (tTG), or other mechanisms leading to post-translational modifications (PTMs) of native epitopes, generating peptides with greater binding affinity to HLA, and enhancing T-cell recognition and activation and increased beta cell death [2]. In the periphery, in T1D-susceptible individuals, PTM of epitopes during antigen processing leads to a higher affinity to HLA, allowing T-cells to recognize the peptide-HLA (pHLA) complex and undergo activation and expansion, rather than anergy. This leads to pancreatic inflammation and beta cell death

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.