Abstract

Plasma membrane cholesterol is required for proper trafficking and localization of receptors that facilitate severe acute respiratory syndrome coronavirus 2 infection. High-density lipoproteins (HDL) mobilize plasma membrane cholesterol, and HDL-cholesterol levels are associated with the severity of COVID-19 disease and mortality. However, HDL-cholesterol levels poorly reflect the function of this complex family of particles, and a detailed assessment of COVID-19-associated changes in HDL functionality and its prognostic value is lacking. In the present study, we assessed HDL cholesterol efflux capacity, HDL anti-inflammatory and antioxidant properties, and changes in HDL composition and metabolism in COVID-19 (n = 48) and non-COVID pneumonia patients (n = 32). COVID-19 infection markedly reduced the activity of lecithin-cholesteryl-acyltransferase and functional parameters of HDL, such as the cholesterol efflux capacity, arylesterase activity of paraoxonase 1, and anti-oxidative capacity of apoB-depleted serum when compared to non-COVID pneumonia at baseline, paralleled by markedly reduced levels of HDL-cholesterol. Of particular interest, low HDL cholesterol efflux capacity was associated with increased mortality risk in COVID-19 patients, independent of HDL-C levels. Our results highlight profound effects of COVID-19 infection on HDL function, metabolism, and composition. Low HDL cholesterol efflux capacity indicates a fatal course of COVID-19, independent of HDL-cholesterol levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.