Abstract

An efficient and precise method is needed for low H2S content biogas biodesulfurization, produced during high solid sludge anaerobic digestion. Continuous experiments were conducted to evaluate the performance of a lab-scale biotrickling filter (BTF) in H2S removal and oxygen utilization. The results show that the sulfur loading rate decreased by 66% compared to conventional H2S content, thus achieving a sufficient removal efficiency (>0.9). With a limited external aeration (0.5–2.0 molO2·molS−1), the oxygen consumption (O/Sre) to its supplement (O/Sin) ratios increased from 50–71% (conventional H2S) to 83–92% (low H2S), indicating that low H2S flux promotes a sufficient oxygen utilization. Furthermore, the difference in oxygen utilization between co-current and counter-current flow patterns decreased under limited external aeration as the H2S content sharply decreased. These results indicate that a dynamic oxygen-sulfur (O–S) balanced multistage BTF is expected to achieve a more precise vertical O–S distribution for sulfur resource recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.