Abstract
The response of low-gravity propellant sloshing is analyzed for the case where an axisymmetrical container is exposed to axial excitation. Spherical coordinates are used to analytically derive the characteristic functions for an arbitrary axisymmetrical convex container, for which time-consuming and expensive numerical methods have been used in the past. Numerical results show that neglecting the surface tension results in the underestimation of the magnitude of the liquid surface oscillation. The reason for this is explained by the influences of the Bond number and the liquid filling level on the critical value of the coefficient of the excitation term in the modal equation, above which the oscillation is destabilized, and on the characteristic root of the destabilized system. [S0021-8936(00)01502-6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.