Abstract

Grain weight is a major determinant in rice yield, which is tightly associated with grain size. However, the underlying molecular mechanisms that control this trait remain unclear. Here, we report a rice (Oryza sativa) mutant, low grain weight (lgw), which shows that reduced grain length is caused by decreased cell elongation and proliferation. Map-based cloning revealed that all mutant phenotypes resulted from a nine-base pair (bp) deletion in LGW, which encodes the kinesin-like protein BRITTLE CULM12 (BC12). Protein sequence alignment analysis revealed that the mutation site was located at the nuclear localization signal (NLS) of LGW/BC12, resulting in the lgw protein not being located in the nucleus. LGW is preferentially expressed in both culms and roots, as well as in the early developing panicles. Overexpression of LGW increased the grain length, indicating that LGW is a positive regulator for regulating grain length. In addition, LGW/BC12 is directly bound to the promoter of GW7 and activates its expression. Elevating the GW7 expression levels in lgw plants rescued the small grain size phenotype. We conclude that LGW regulates grain development by directly binding to the GW7 promoter and activating its expression. Our findings revealed that LGW plays an important role in regulating grain size, and manipulation of this gene provides a new strategy for regulating grain weight in rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.