Abstract

BackgroundRhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens. High-throughput technologies have revealed that individual ticks carry a high diversity of pathogens, including bacteria, protozoa and viruses. Currently, it is accepted that co-infections (multiple pathogen species within an individual) are very common in ticks and influence pathogen acquisition and transmission as well as host infection risk. However, little is known on the impact of the genetic diversity of pathogens on the incidence of co-infections. Herein, we studied the frequency of co-infections in R. sanguineus (s.l.) and their association with the genetic diversity of Ehrlichia canis.MethodsRhipicephalus sanguineus (s.l.) female ticks (n = 235) were collected from healthy farm dogs in three districts of Pakistan. Microfluidic real-time PCR, a powerful nanotechnology for high-throughput molecular detection of pathogens, was used to test the presence of 25 bacterial and seven parasitic species in individual ticks. The genetic diversity of E. canis was evaluated by characterizing the trp36 gene.ResultsA total of 204 ticks were infected with at least one pathogen and 109 co-infected with two (80%) or three (20%) pathogens. Rickettsia massiliae (human pathogen) and E. canis (zoonotic dog pathogen) were the most common pathogens co-infecting (30.4%) ticks. Furthermore, all identified co-infections included R. massiliae and/or E. canis. Multiple correspondence analysis (MCA) revealed that single infections did not show clear regional association whereas some co-infections were restricted to certain geographical regions. The sequence analysis of trp36 in representative samples allowed the identification of three E. canis strains with low genetic diversity, and the strain found in Muzaffargarh district appeared to be more adapted to co-infection with R. massiliae.ConclusionsRhipicephalus sanguineus (s.l.) harbors multiple co-infections with human and dog pathogens of zoonotic potential. Findings of this study suggest that genetic diversity of E. canis may favor co-infections with different pathogens.

Highlights

  • Rhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens

  • Rickettsia massiliae was the most commonly (68%) detected pathogen followed by E. canis (51%) and Anaplasma spp. (17%), including A. phagocytophilum (6%), A. marginale (4%), A. centrale (3%), A. platys (3%) and A. ovis (1%)

  • This study reports that tick-borne pathogen co-infections are very common in R. sanguineus (s.l.) ticks from Pakistan

Read more

Summary

Introduction

Rhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens. Rhipicephalus sanguineus (s.l.) is known to transmit a number of pathogens that produce disease in dogs, including babesiosis (caused by Babesia canis, B. gibsoni and B. vogeli), ehrlichiosis (Ehrlichia canis and Anaplasma platys), hepatozoonosis (Hepatozoon canis), and rickettsioses/spotted fever (Rickettsia rickettsii, R. massiliae and R. conorii), especially in tropical and subtropical regions of the world [1, 11,12,13,14,15]. (Borrelia spp., Ehrlichia spp. and Anaplasma spp.) and Rhipicephalus microplus (Anaplasma spp.) in various parts of the world [3, 16,17,18] Many of these tick-borne pathogens in dogs could be of zoonotic importance, which warrants for studies assessing tick-borne pathogens in ticks collected from dogs. The risk of zoonotic tick-borne diseases in dogs is especially important in geographical regions which offer conducive environments for the increasing of tick abundance [2, 6, 9]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.