Abstract

IntroductionSubmicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal.Materials and methodsHundred and fifty blood samples were collected from febrile individuals living in Dielmo and Ndiop (Senegal) between August 2014 and January 2015, tested for microscopic and sub-microscopic P. falciparum infections and characterized for their genetic diversity and complexity of infections using msp-1 and msp-2 genotyping.ResultsSubmicroscopic P. falciparum infections were 19.6% and 25% in Dielmo and Ndiop, respectively. K1 and 3D7 were the predominant msp-1 and msp-2 allelic types with respective frequencies of 67.36% and 67.10% in microscopic isolates and 58.24% and 78% in submicroscopic ones. Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher’s Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher’s Exact Test, p = 0.02). Multiplicities of infection were lowest in submicroscopic P. falciparum isolates.ConclusionsThe study revealed a high submicroscopic P. falciparum carriage among patients in the study areas, and that submicroscopic P. falciparum isolates had a lower genetic diversity and complexity of malaria infections.

Highlights

  • Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal

  • This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal

  • Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher’s Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher’s Exact Test, p = 0.02)

Read more

Summary

Introduction

Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. Studies have estimated that submicroscopic Plasmodium infections sourced for 20–50% of all human-to-mosquito transmissions when transmission reaches very low levels [8], and a meta-analysis of community-based study has shown that microscopy only detected 50% of the infections identified by PCR [9]. Together, this revealed the importance of submicroscopic Plasmodium infections for ongoing malaria transmission and highlighted the relevance of addressing such infections

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.