Abstract

In quiescent runaway electron plasmas in the DIII-D tokamak, whistler waves with frequencies between 90 and 200 MHz are driven unstable in plasmas with appreciable hard x-ray and non-thermal electron cyclotron emission (ECE). Narrow (δf < 50 kHz) discrete modes with erratically spaced frequencies are observed. Unstable modes often extend over a range Δf ≃ 50 MHz but lower frequency unstable modes are usually most intense. The dependency of the frequency on field and density implies a wavenumber k ≃ 150 m−1 with parallel wavenumber k∥ ≪ k. Reducing the gap between the plasma and the wall increases the number of detected modes. Lowering the magnetic field promotes instability. Nonlinear limit-cycle-like oscillations in the whistler amplitude occur on a 10 ms timescale. The ECE signals often jump at whistler bursts, suggesting that the modes pitch-angle scatter the runaways. Sawteeth cause transient stabilization of the whistlers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.