Abstract

Amorphous packings prepared in the vicinity of the jamming transition play a central role in theoretical studies of the vibrational spectrum of glasses. Two mean-field theories predict that the vibrational density of states g(ω) obeys a characteristic power law, g(ω)∼ω^{2}, called the non-Debye scaling in the low-frequency region. Numerical studies have, however, reported that this scaling breaks down at low frequencies, due to finite-dimensional effects. In this study, we prepare amorphous packings of up to 128000 particles in spatial dimensions from d=3 to d=9 to characterize the range of validity of the non-Debye scaling. Our numerical results suggest that the non-Debye scaling is obeyed down to a frequency that gradually decreases as d increases, and possibly vanishes for large d, in agreement with mean-field predictions. We also show that the prestress is an efficient control parameter to quantitatively compare packings across different spatial dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.