Abstract

The vibrational spectra of four ionic liquids, sharing the same imidazolium cation but containing different anions-[bmim][NO(3)], [bmim][BF(4)], [bmim][PF(6)], and [bmim][NTf(2)]-have been obtained using normal-mode analysis within the harmonic approximation and from velocity autocorrelation functions from a molecular dynamics trajectory generated using empirical force fields. The vibrational density of states obtained from the two methods agree well. The low frequency modes (<100 cm(-1)) exhibit a red shift with an increase in the anion size. Deuteration of the ring hydrogens leads to a negligible change in this region of the spectrum. The participation ratio of low frequency modes is large, implying that they are not localized to a few atoms. The low frequency band arises primarily from short-range interionic interactions, and the exact peak position is modulated by the cation-anion hydrogen bond strength. Results obtained from these force-field-based calculations are confirmed by ab initio molecular dynamics simulations of crystalline [bmim][PF(6)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.