Abstract

In addition to the fast correlation for local stochastic motion, the molecular velocity correlation function in a fluid enclosed within the pore boundaries features a slow long time-tail decay. Here we present its study by the NMR modulated gradient spin-echo method (MGSE) [1] on a system of water trapped in the space between the closely packed polystyrene beads. With MGSE pulse sequence, a repetitive train of RF pulses with interspersed gradient pulses periodically modulates the spin phase. It gives the spin echo attenuation proportional to a value of the molecular velocity correlation spectrum at the modulation frequency. Covering the frequency range between Hz and MHz, it is a complement to the quasi-elastic neutron scattering, and so a suitable technique for the investigation of low frequency molecular dynamics in fluids. In our experiment, it enables to extract the low frequency correlation spectrum of water molecules confined in porous media. The function exhibits a negative long time-tail characteristic (a low frequency decay of the spectrum), which can be interpreted as a molecular back scattering on boundaries. The results can be well fitted with the spectrum calculated from the solution of the Langevin equation for restricted diffusion (which exhibits an exponential decay) [2] as well as with the spectrum obtained when simulating the hydrodynamics of molecular motion constrained by capillary walls (which gives an algebraic decay) [3]. Despite much work on theories and simulation, which predict slow negative long time tail of molecular velocity correlation dynamics in confined fluids, the obtained velocity correlation spectrum is the first experimental evidence to confirm these effects. The obtained dependence of spin echo attenuation on time, gradient strength and modulation frequency is also the first experimental verification of the recently developed approach to the spin echo in porous media, that uses the spin phase average with the cumulant expansion to get the attenuation as a discord of spin spatial coherence [4].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call