Abstract

Results from a global coupled ocean-atmosphere general circulation model (GCM) are used to perform the first in a series of studies of the various time and space scales of climate anomalies in an environment of gradually increasing carbon dioxide (CO2) (a linear transient increase of 1% per year in the coupled model). Since observed climate anomaly patterns often are computed as time-averaged differences between two periods, climate-change signals in the coupled model are defined using differences of various averaging intervals between the transient and control integrations. Annual mean surface air temperature differences for several regions show that the Northern Hemisphere warms faster than the Southern Hemisphere and that land areas warm faster than ocean. The high northern latitudes outside the North Atlantic contribute most to global warming but also exhibit great variability, while the high southern latitudes contribute the least. The equatorial tropics warm more slowly than the subtropics due to strong upwelling and mixing in the ocean. The globally averaged surface air temperature trend computed from annual mean differences for years 23–60 is 0.03‡ C per year. Projecting this trend to the time of CO2 doubling in year 100 produces a warming of 2.3° C. By chance, one particular northern winter five-year average geographical difference pattern in the Northern Hemisphere from the coupled model resembles the recent observed pattern of surface temperature and sea-level pressure anomalies. This pattern is not consistent from one five-year period to the next in any season in the model. However, multidecadal averages in the coupled model show that the North Atlantic warms less than the rest of the high northern latitudes, and recent observations may be a manifestation of this phenomenon. Consistent geographic patterns of climate anomalies forced by increased CO2 in the model are more evident with a longer averaging interval. There is also the possibility that the CO2 climate-change signal may itself be a function of time and space. The general pattern of zonal mean temperature anomalies for all periods in the model shows warming in the troposphere and cooling in the stratosphere. This pattern (or one similar to it taking into account the rest of the trace gases) could be looked for in observations to verify the enhanced greenhouse effect. A zonal mean pattern, however, could prove scientifically satisfactory but of little value to policymakers seeking regional climate-change forecasts. These results from the coupled model underscore the difficulty in identifying a time- and space-dependent “fingerprint” of greenhouse warming that has some practical use from short climatic records and point to the need to understand the mechanisms of decadal-scale variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.