Abstract

SummaryThe extraction of temporal information from sensory input streams is of paramount importance in the auditory system. In this study, amplitude-modulated sounds were used as stimuli to drive auditory cortex (AC) neurons of the bat species Carollia perspicillata, to assess the interactions between cortical spikes and local-field potentials (LFPs) for the processing of temporal acoustic cues. We observed that neurons in the AC capable of eliciting synchronized spiking to periodic acoustic envelopes were significantly more coherent to theta- and alpha-band LFPs than their non-synchronized counterparts. These differences occurred independently of the modulation rate tested and could not be explained by power or phase modulations of the field potentials. We argue that the coupling between neuronal spiking and the phase of low-frequency LFPs might be important for orchestrating the coding of temporal acoustic structures in the AC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call