Abstract

The paper presents a method to compute the air-gap flux position in induction motors at very low including zero-stator frequency. A low-frequency (50 /spl divide/ 100 Hz) sinusoidal stationary signal is added to the normal stator variables to provide the machine with a suitable permanent excitation. Such an additional excitation modulates the saturation level of the magnetic core of the machine according to the angular position of the air-gap flux. As a result, a new zero-sequence stator-voltage component is generated that contains useful information about the position of the air-gap flux unaffected by load variation. Such a zero-sequence voltage can be easily employed to provide a wide bandwidth measurement of the air-gap flux position. A key feature of the proposed approach is that a low-frequency (0 /spl divide/ 5 Hz) signal is demodulated, thus avoiding any drawback featured by previous sensorless techniques operating with high-frequency signal injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.