Abstract

The sea surface normalized radar backscatter cross-section (NRCS) and Doppler velocity (DV) exhibit energy at low frequencies (LF) below the surface wave peak. These NRCS and DV variations are coherent and thus may produce a bias in the DV averaged over large footprints, which is important for interpretation of Doppler scatterometer measurements. To understand the origin of LF variations, the platform-borne Ka-band radar measurements with well-pronounced LF variations at frequencies below wave peak (0.19 Hz) are analyzed. These data show that the LF NRCS is coherent with wind speed at 21 m height while the LF DV is not. The NRCS-wind correlation is significant only at frequencies below 0.01 Hz indicating either differences between near-surface wind (affecting radar signal) and 21-m height wind (actually measured) or contributions of other mechanisms of LF radar signal variations. It is shown that non-linearity in NRCS-wave slope Modulation Transfer Function (MTF) and inherent averaging within radar footprint account for NRCS and DV LF variance, with the exception of VV NRCS for which almost half of the LF variance is unexplainable by these mechanisms and perhaps attributable to wind fluctuations. Although the distribution of radar DV is quasi-Gaussian, suggesting virtually little impact of non-linearity, the LF DV variations arise due to footprint averaging of correlated local DV and non-linear NRCS. Numerical simulations demonstrate that MTF non-linearity weakly affects traditional linear MTF estimate (less than 10% for typical MTF magnitudes less than 20). Thus the linear MTF is a good approximation to evaluate the DV averaged over large footprints typical of satellite observations.

Highlights

  • Doppler frequency shift of radar backscattering from the sea surface and corresponding Doppler Velocity (DV) are governed by the surface kinematics

  • Impact of wind and waves on low frequencies (LF) signatures is analyzed based on radar signal comparisons with simultaneous wind and wave measurements

  • This study presents the analysis of LF variations of Doppler radar backscattering from the sea surface based on Ka-band field measurements

Read more

Summary

Introduction

Doppler frequency shift of radar backscattering from the sea surface and corresponding Doppler Velocity (DV) are governed by the surface kinematics. The DV measured by a coherent radar was used as a proxy for wave gauge (WG) to examine wave-induced modulations of the normalized radar cross-section (NRCS) [1,2,3]. Along-track interferometry [4,5,6] as well as Doppler centroid anomaly [7,8,9] methods were used to demonstrate an ability to detect surface currents from air/space-borne radar platforms. The wave-induced DV is not small [6,9,15,16] and is important for retrieving surface currents from measured DV

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.