Abstract

A key structure in so-called metamaterial mediums is the elementary split-ring resonator. We consider in this paper the low-frequency electromagnetic scattering by a split-ring particle modelled as a perfectly conducting wire ring, furnished with a narrow gap, and derive analytical solutions for the electric and magnetic dipole moments for different kinds of incidence and polarisation in the quasi-static approximation. Through a vectorial homogenisation process, the expressions discovered for the dipole moments and the related polarisability dyadics are linked with the macroscopic constitutive equations for the medium. We further show that the condition for resonance of a medium consisting of simple split-rings cannot be achieved by means of the given quasi-static terms without violating the underlying assumptions of homogenisation. Nevertheless, the results are applicable for sparse medium of rings, and we derive numerical guidelines for the applicability with some examples of the effect of the considered split-ring medium on electromagnetic wave propagation. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.