Abstract
This work describes an optical configuration for a Raman spectrophotometer, which permits variation of the laser spot size from 3 to 3000μm, maintaining a high Raman photons throughput and allowing acquisitions with a short integration time. In addition, the instrument can acquire spectra from the low to middle frequency vibrational range (10 to 2000cm-1), on the Stokes and anti-Stokes sides. One of the features of this new optical configuration is the non-use of beam splitters to redirect the scattered light to the detector, which would sacrifice the laser power. The quantitative and qualitative analytical performances of the Raman spectrophotometer were evaluated using chemometric models to predict the concentrations of different active pharmaceutical ingredients (APIs) in mixtures with polymorphs and excipients, as well as by analysis of an API mixture employing hyperspectral imaging. This new optical configuration was shown to be versatile for pharmaceutical purposes and could be used in applications such as the characterization of new drugs or the quality control of raw materials and processes, using normal Raman measurements or SERS (surface-enhanced Raman scattering).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.