Abstract

Density functional theory based calculations and experimental analysis on a limited number of real samples are performed to study how the presence of silver intercalated in the van der Waals gap of few-layer MoS2 affects the low-frequency Raman active modes of this material. Silver is found to predominantly affect the breathing-like and shear-like vibrational modes of MoS2. These modes correspond to quasi-rigid movements of each individual layer with a restoring force (and, in turn, frequency) that is determined by modulations in the weak interlayer interactions. Noticeable red-shifts with increasing Ag concentration are found for all low-frequency modes. This finding indicates the potential for low-frequency vibrations as useful gauges for practical determination of silver concentration using low-frequency Raman spectroscopy. This work also describes a semi-classical linear chain model that allows to extrapolate results to a large number of layers. Further, first-principles calculations show how Raman spectroscopy can be used to characterize the quality of the two-dimensional interface between MoS2 and a silver substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.