Abstract

Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of 85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was 5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call