Abstract

Resistive switching in aluminum-polymer diodes has been investigated by noise measurements. Quantitative criteria to characterize the diode states are: (i) Pristine state shows I ∝ Vm with m ≈ 6 at higher bias typical for tunneling. The resistance is very high, 1/f noise is very low, but the relative 1/f noise, fSI/I2 ≡ C1/f is very high. (ii) Forming state is a time-dependent soft breakdown in the Al-oxide that results in random telegraph signal noise (RTS) with a Lorentzian spectrum or in multi-level resistive switching (MLS) with a 1/f3/2 or 1/f-like spectrum. (iii) The H- or L-state shows I ∝ Vm with m = 1 for V < 1 V and 3/2 < m < 2 for V > 1 V . Deviations from ohmic behavior are explained by space charge limited current in the polymer. Reliable H- and L-states show pure 1/f noise, a resistance R that changes by at least a factor 30 and 1/f noise that follows the proportionality: C1/f ∝ R with a proportionality factor αμ( cm 2/ Vs ) of the same level as observed in metals, polymers and other semiconductors. C1/f ∝ R is explained by switching of the number of homogeneous conducting paths in parallel. Deviations in C 1/f ∝ R are also explained. In the pristine state and even in the H-state, only a fraction of the device are is carrying current and switching seems to be at spots of the Al/Al2O3 /polymer interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.