Abstract

Low-frequency noise in strained Ge epitaxial layers, which are grown on a reverse-graded relaxed SiGe buffer layer, has been evaluated for different front-end processing conditions. It has been shown that the 1/f noise in strong inversion is governed by trapping in the gate oxide (number fluctuations) and not affected by the presence of compressive strain in the channel. However, some impact has been found from the type of halo implantation used, whereby the lowest noise spectral density and the highest hole mobility are obtained by replacing the standard As halo by P implantation. At the same time, omitting the junction anneal results in poor device characteristics, which can be understood by considering the presence of a high density of nonannealed implantation damage in the channel and the gate stack near the source and the drain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call